MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations

Author(s)
Henry, Asegun; Chen, Gang
Thumbnail
DownloadHenry-2009-Anomalous heat condu.pdf (1.300Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In 1955 Fermi, Pasta, and Ulam showed that a simple model for a nonlinear one-dimensional chain of particles can be nonergodic, which implied infinite thermal conductivity. A more recent investigation of a realistic model for an individual polyethylene chain suggests that this phenomenon can even persist in real polymer chains. The reason for the divergent behavior and its associated mechanism, however, remains unclear. This paper presents a general formulation for normal-mode vibrational contributions to thermal conductivity, which is then used to analyze molecular dynamics simulations of individual polyethylene chains. Our analysis shows that cross correlations for midfrequency longitudinal-acoustic phonons are responsible for the divergent thermal conductivity in our model.
Date issued
2009-04
URI
http://hdl.handle.net/1721.1/51832
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Henry, Asegun , and Gang Chen. “Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations.” Physical Review B 79.14 (2009): 144305. © 2009 The American Physical Society.
Version: Final published version
ISSN
1550-235X
1098-0121

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.