MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effective Slip over Superhydrophobic Surfaces in Thin Channels

Author(s)
Feuillebois, Francois; Bazant, Martin Z.; Vinogradova, Olga I.
Thumbnail
DownloadFeuillebois-2009-Effective Slip over.pdf (468.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a microscopic texture. Recent work has focused on specific cases, such as arrays of pillars or grooves, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g., low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. Tighter bounds for isotropic textures further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.
Date issued
2009-01
URI
http://hdl.handle.net/1721.1/52093
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Feuillebois, François , Martin Z. Bazant, and Olga I. Vinogradova. “Effective Slip over Superhydrophobic Surfaces in Thin Channels.” Physical Review Letters 102.2 (2009): 026001. © 2009 The American Physical Society
Version: Final published version
ISSN
0031-9007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.