MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorial Preconditioners for Scalar Elliptic Finite-Element Problems

Author(s)
Avron, Haim; Chen, Doron; Shklarski, Gil; Toledo, Sivan
Thumbnail
DownloadAvron-2009-COMBINATORIAL PRECON.pdf (1.138Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a new preconditioner for linear systems arising from finite-element discretizations of scalar elliptic partial differential equations (PDE's). The solver splits the collection $\{K_{e}\}$ of element matrices into a subset of matrices that are approximable by diagonally dominant matrices and a subset of matrices that are not approximable. The approximable $K_{e}$'s are approximated by diagonally dominant matrices $L_{e}$'s that are assembled to form a global diagonally dominant matrix $L$. A combinatorial graph algorithm then approximates $L$ by another diagonally dominant matrix $M$ that is easier to factor. Finally, $M$ is added to the inapproximable elements to form the preconditioner, which is then factored. When all the element matrices are approximable, which is often the case, the preconditioner is provably efficient. Approximating element matrices by diagonally dominant ones is not a new idea, but we present a new approximation method which is both efficient and provably good. The splitting idea is simple and natural in the context of combinatorial preconditioners, but hard to exploit in other preconditioning paradigms. Experimental results show that on problems in which some of the $K_{e}$'s are ill conditioned, our new preconditioner is more effective than an algebraic multigrid solver, than an incomplete-factorization preconditioner, and than a direct solver.
Date issued
2009-06
URI
http://hdl.handle.net/1721.1/52300
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
SIAM Journal on Matrix Analysis and Applications
Publisher
Society for Industrial and Applied Mathematics
Citation
Avron, Haim et al. “Combinatorial Preconditioners for Scalar Elliptic Finite-Element Problems.” SIAM Journal on Matrix Analysis and Applications 31.2 (2009): 694-720. ©2009 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
0895-4798

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.