MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation and compression of multidimensional piecewise functions using surflets

Author(s)
Chandrasekaran, Venkat; Wakin, Michael B.; Baron, Dror; Baraniuk, Richard G.
Thumbnail
DownloadChandrasekaran_Representation-and-Compression.pdf (1.125Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study the representation, approximation, and compression of functions in M dimensions that consist of constant or smooth regions separated by smooth (M-1)-dimensional discontinuities. Examples include images containing edges, video sequences of moving objects, and seismic data containing geological horizons. For both function classes, we derive the optimal asymptotic approximation and compression rates based on Kolmogorov metric entropy. For piecewise constant functions, we develop a multiresolution predictive coder that achieves the optimal rate-distortion performance; for piecewise smooth functions, our coder has near-optimal rate-distortion performance. Our coder for piecewise constant functions employs surflets, a new multiscale geometric tiling consisting of M-dimensional piecewise constant atoms containing polynomial discontinuities. Our coder for piecewise smooth functions uses surfprints, which wed surflets to wavelets for piecewise smooth approximation. Both of these schemes achieve the optimal asymptotic approximation performance. Key features of our algorithms are that they carefully control the potential growth in surflet parameters at higher smoothness and do not require explicit estimation of the discontinuity. We also extend our results to the corresponding discrete function spaces for sampled data. We provide asymptotic performance results for both discrete function spaces and relate this asymptotic performance to the sampling rate and smoothness orders of the underlying functions and discontinuities. For approximation of discrete data, we propose a new scale-adaptive dictionary that contains few elements at coarse and fine scales, but many elements at medium scales. Simulation results on synthetic signals provide a comparison between surflet-based coders and previously studied approximation schemes based on wedgelets and wavelets.
Date issued
2008-12
URI
http://hdl.handle.net/1721.1/52325
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers
Citation
Chandrasekaran, V. et al. “Representation and Compression of Multidimensional Piecewise Functions Using Surflets.” Information Theory, IEEE Transactions on 55.1 (2009): 374-400. © 2008 Institute of Electrical and Electronics Engineers
Version: Final published version
ISSN
0018-9448
Keywords
wavelets, surflets, sparse representations, rate–distortion, nonlinear approximation, multiscale representations, multidimensional signals, metric entropy, discontinuities, compression

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.