MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Precipitation, Recycling, and Land Memory: An Integrated Analysis

Author(s)
Dirmeyer, Paul A.; Schlosser, Adam; Brubaker, Kaye L.
Thumbnail
DownloadDirmeyer-2009-Precipitation, Recyc.pdf (3.717Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A synthesis of several approaches to quantifying land–atmosphere interactions is presented. These approaches use data from observations or atmospheric reanalyses applied to atmospheric tracer models and stand-alone land surface schemes. None of these approaches relies on the results of general circulation model simulations. A high degree of correlation is found among these independent approaches, and constructed here is a composite assessment of global land–atmosphere feedback strength as a function of season. The composite combines the characteristics of persistence of soil moisture anomalies, strong soil moisture regulation of evaporation rates, and reinforcement of water cycle anomalies through recycling. The regions and seasons that have a strong composite signal predominate in both summer and winter monsoon regions in the period after the rainy season wanes. However, there are exceptions to this pattern, most notably over the Great Plains of North America and the Pampas/Pantanal of South America, where there are signs of land–atmosphere feedback throughout most of the year. Soil moisture memory in many of these regions is long enough to suggest that real-time monitoring and accurate initialization of the land surface in forecast models could lead to improvements in medium-range weather to subseasonal climate forecasts.
Date issued
2008-07
URI
http://hdl.handle.net/1721.1/52326
Department
Massachusetts Institute of Technology. Center for Global Change Science
Journal
Journal of Hydrometeorology
Publisher
American Meteorological Society
Citation
Dirmeyer, Paul A, C. Adam Schlosser, and Kaye L Brubaker. “Precipitation, Recycling, and Land Memory: An Integrated Analysis.” Journal of Hydrometeorology (2009): 278-288. © 2008 American Meteorological Society
Version: Final published version
ISSN
1525-755X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.