MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission

Author(s)
Flores, Alejandro N.; Ivanov, Valeriy Y.; Entekhabi, Dara; Bras, Rafael L.
Thumbnail
DownloadFlores_Impact-of-Hillslope.pdf (1.442Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Microwave radiometry will emerge as an important tool for global remote sensing of near-surface soil moisture in the coming decade. In this modeling study, we find that hillslope-scale topography (tens of meters) influences microwave brightness temperatures in a way that produces bias at coarser scales (kilometers). The physics underlying soil moisture remote sensing suggests that the effects of topography on brightness temperature observations are twofold: 1) the spatial distribution of vegetation, moisture, and surface and canopy temperature depends on topography and 2) topography determines the incidence angle and polarization rotation that the observing sensor makes with the local land surface. Here, we incorporate the important correlations between factors that affect emission (e.g., moisture, temperature, and vegetation) and topographic slope and aspect. Inputs to the radiative transfer model are obtained at hillslope scales from a mass-, energy-, and carbon-balance-resolving ecohydrology model. Local incidence and polarization rotation angles are explicitly computed, with knowledge of the local terrain slope and aspect as well as the sky position of the sensor. We investigate both the spatial organization of hillslope-scale brightness temperatures and the sensitivity of spatially aggregated brightness temperatures to satellite sky position. For one computational domain considered, hillslope-scale brightness temperatures vary from approximately 121 to 317 K in the horizontal polarization and from approximately 117 to 320 K in the vertical polarization. Including hillslope-scale heterogeneity in factors effecting emission can change watershed-aggregated brightness temperature by more than 2 K, depending on topographic ruggedness. These findings have implications for soil moisture data assimilation and disaggregation of brightness temperature observations to hillslope scales.
Date issued
2009-04
URI
http://hdl.handle.net/1721.1/52331
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
IEEE Transactions on Geoscience and Remote Sensing
Publisher
Institute of Electrical and Electronics Engineers
Citation
Flores, A.N. et al. “Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission.” Geoscience and Remote Sensing, IEEE Transactions on 47.8 (2009): 2557-2571. © 2009 Institute of Electrical and Electronics Engineers
Version: Final published version
ISSN
2557 - 2571
Keywords
vegetation, topography, soil temperature, soil moisture, remote sensing, radiative transfer, observation bias, microwave radiometer, ecohydrology

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.