Optics and interferometry with atoms and molecules
Author(s)
Cronin, Alexander D.; Schmiedmayer, Jorg; Pritchard, David E.
DownloadCronin-2009-Optics and interfero.pdf (5.414Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.
Date issued
2009-07Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Reviews of Modern Physics
Publisher
American Physical Society
Citation
Cronin, Alexander D., Jörg Schmiedmayer, and David E. Pritchard. “Optics and interferometry with atoms and molecules.” Reviews of Modern Physics 81.3 (2009): 1051. © 2009 The American Physical Society
Version: Final published version
ISSN
0034-6861