MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

One-dimensional nanostructure-guided chain reactions: Harmonic and anharmonic interactions

Author(s)
Nair, Nitish; Strano, Michael S.
Thumbnail
DownloadNair-2009-One-dimensional nanostructure-guided chain reactions.pdf (1.297Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We have performed a parametric study of self-propagating chain reactions along a one-dimensional bead-spring array. The coupling between beads is modeled using harmonic and anharmonic Fermi-Pasta-Ulam (FPU)-β and φ[superscript 4] potentials. The parameters that define the system are the activation energy (E[subscript a]) of the reactive group and the fraction (α) of the reaction enthalpy that is converted to the kinetic energies of the reacted products. The mean conversion for a 100-bead lattice was investigated as a function of these handles. Assemblies of pristine chains with reactive groups having E[subscript a]<25 kcal/mol are shown to be inherently unstable. At loads of 3–4 energetic molecules/bead (E[subscript a]=35 kcal/mol, α=0.7), the FPU and harmonic lattices behaved similarly with reaction velocities ranging between 8 and 8.5 km/sec. The φ[superscript 4] lattice exhibited lower conversions along with the formation of a reaction initiation zone where the velocity was at least half of the bulk value at the aforementioned loads. Fourier analyses of the kinetic energy traces of the φ[superscript 4] lattice revealed that only high-frequency excitations led to viable wave propagation, which explains the prominence of the start-up zone at lower loadings of the energetic molecules. High velocity reaction waves are only observed in perfect crystal arrays. The presence of defects in the chain, i.e., beads with weaker force constants, hampers the progress of the wave.
Date issued
2009-11
URI
http://hdl.handle.net/1721.1/52449
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Nair, Nitish , and Michael S. Strano. “One-dimensional nanostructure-guided chain reactions: Harmonic and anharmonic interactions.” Physical Review B 80.17 (2009): 174301. © 2009 The American Physical Society
Version: Final published version
ISSN
1550-235X
1098-0121

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.