MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling study of thermoelectric SiGe nanocomposites

Author(s)
Minnich, Austin Jerome; Lee, H.; Wang, X. W.; Joshi, G.; Dresselhaus, Mildred; Ren, Z. F.; Chen, Gang; Vashaee, D.; ... Show more Show less
Thumbnail
DownloadMinnich-2009-Modeling study.pdf (328.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better understand the reported data and to gain insight into transport in nanocomposites, we use the Boltzmann transport equation under the relaxation-time approximation to calculate the thermoelectric properties of n-type and p-type SiGe nanocomposites. We account for the strong grain-boundary scattering mechanism in nanocomposites using phonon and electron grain-boundary scattering models. The results from this analysis are in excellent agreement with recently reported measurements for the n-type nanocomposite but the experimental Seebeck coefficient for the p-type nanocomposite is approximately 25% higher than the model’s prediction. The reason for this discrepancy is not clear at the present time and warrants further investigation. Using new mobility measurements and the model, we find that dopant precipitation is an important process in both n-type and p-type nanocomposites, in contrast to bulk SiGe, where dopant precipitation is most significant only in n-type materials. The model also shows that the potential barrier at the grain boundary required to explain the data is several times larger than the value estimated using the Poisson equation, indicating the presence of crystal defects in the material. This suggests that an improvement in mobility is possible by reducing the number of defects or reducing the number of trapping states at the grain boundaries.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/52461
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Minnich, A. J. et al. “Modeling study of thermoelectric SiGe nanocomposites.” Physical Review B 80.15 (2009): 155327. © 2009 The American Physical Society
Version: Final published version
ISSN
1550-235X
1098-0121

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.