MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated vocabulary discovery for geo-parsing online epidemic intelligence

Author(s)
Keller, Mikaela; Freifeld, Clark C.; Brownstein, John S.
Thumbnail
DownloadKeller-2009-Automated vocabulary.pdf (458.5Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0/
Metadata
Show full item record
Abstract
Background Automated surveillance of the Internet provides a timely and sensitive method for alerting on global emerging infectious disease threats. HealthMap is part of a new generation of online systems designed to monitor and visualize, on a real-time basis, disease outbreak alerts as reported by online news media and public health sources. HealthMap is of specific interest for national and international public health organizations and international travelers. A particular task that makes such a surveillance useful is the automated discovery of the geographic references contained in the retrieved outbreak alerts. This task is sometimes referred to as "geo-parsing". A typical approach to geo-parsing would demand an expensive training corpus of alerts manually tagged by a human. Results Given that human readers perform this kind of task by using both their lexical and contextual knowledge, we developed an approach which relies on a relatively small expert-built gazetteer, thus limiting the need of human input, but focuses on learning the context in which geographic references appear. We show in a set of experiments, that this approach exhibits a substantial capacity to discover geographic locations outside of its initial lexicon. Conclusion The results of this analysis provide a framework for future automated global surveillance efforts that reduce manual input and improve timeliness of reporting.
Date issued
2009-11
URI
http://hdl.handle.net/1721.1/52463
Department
Harvard University--MIT Division of Health Sciences and Technology; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
BMC Bioinformatics
Publisher
BioMed Central Ltd.
Citation
Keller, Mikaela, Clark Freifeld, and John Brownstein. “Automated vocabulary discovery for geo-parsing online epidemic intelligence.” BMC Bioinformatics 10.1 (2009): 385.
Version: Final published version
ISSN
1471-2105

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.