MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical bayes analysis of quantitative proteomics experiments

Author(s)
Golub, Todd R.; Schreiber, Stuart L.; Gould, Robert J.; Schenone, Monica; Ong, Shao-En; Margolin, Adam A.; Carr, Steven A; ... Show more Show less
Thumbnail
DownloadMargolin-2009-Empirical bayes anal.pdf (826.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.5/
Metadata
Show full item record
Abstract
Background: Advances in mass spectrometry-based proteomics have enabled the incorporation of proteomic data into systems approaches to biology. However, development of analytical methods has lagged behind. Here we describe an empirical Bayes framework for quantitative proteomics data analysis. The method provides a statistical description of each experiment, including the number of proteins that differ in abundance between 2 samples, the experiment's statistical power to detect them, and the false-positive probability of each protein. Methodology/Principal Findings: We analyzed 2 types of mass spectrometric experiments. First, we showed that the method identified the protein targets of small-molecules in affinity purification experiments with high precision. Second, we re-analyzed a mass spectrometric data set designed to identify proteins regulated by microRNAs. Our results were supported by sequence analysis of the 3′ UTR regions of predicted target genes, and we found that the previously reported conclusion that a large fraction of the proteome is regulated by microRNAs was not supported by our statistical analysis of the data. Conclusions/Significance: Our results highlight the importance of rigorous statistical analysis of proteomic data, and the method described here provides a statistical framework to robustly and reliably interpret such data.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/52481
Department
Koch Institute for Integrative Cancer Research at MIT
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
Margolin, Adam A. et al. “Empirical Bayes Analysis of Quantitative Proteomics Experiments.” PLoS ONE 4.10 (2009): e7454.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.