Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics
Author(s)
Bazant, Zdenek P.; Le, Jia-Liang; Bazant, Martin Z.
DownloadBazant-2009-Scaling of strength.pdf (1.374Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The failure probability of engineering structures such as aircraft, bridges, dams, nuclear structures, and ships, as well as microelectronic components and medical implants, must be kept extremely low, typically <10−6. The safety factors needed to ensure it have so far been assessed empirically. For perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because the cumulative distribution function (cdf) of random material strength is known and fixed. However, such an approach is insufficient for structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared with the structure size. The reason is that the strength cdf of quasibrittle structure varies from Gaussian to Weibullian as the structure size increases. In this article, a recently proposed theory for the strength cdf of quasibrittle structure is refined by deriving it from fracture mechanics of nanocracks propagating by small, activation-energy-controlled, random jumps through the atomic lattice. This refinement also provides a plausible physical justification of the power law for subcritical creep crack growth, hitherto considered empirical. The theory is further extended to predict the cdf of structural lifetime at constant load, which is shown to be size- and geometry-dependent. The size effects on structure strength and lifetime are shown to be related and the latter to be much stronger. The theory fits previously unexplained deviations of experimental strength and lifetime histograms from the Weibull distribution. Finally, a boundary layer method for numerical calculation of the cdf of structural strength and lifetime is outlined.
Date issued
2009-07Department
Massachusetts Institute of Technology. Department of Chemical EngineeringJournal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences
Citation
Bažant, Zdeněk P., Jia-Liang Le, and Martin Z. Bazant. “Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics.” Proceedings of the National Academy of Sciences 106.28 (2009): 11484-11489. ©2009 the National Academy of Sciences
Version: Final published version
ISSN
0027-8424
Keywords
multiscale transition, size effect, extreme value statistics, crack growth rate, cohesive fracture