Show simple item record

dc.contributor.authorDai, Lillian L.
dc.contributor.authorChan, Vincent W. S.
dc.date.accessioned2010-03-10T21:04:55Z
dc.date.available2010-03-10T21:04:55Z
dc.date.issued2009-03
dc.date.submitted2008-12
dc.identifier.issn1536-1276
dc.identifier.urihttp://hdl.handle.net/1721.1/52490
dc.description.abstractThroughput scaling and optimal hop distance of interference-limited wireless networks have been well characterized in literature. For some emerging wireless networks, throughput may be more limited by battery energy rather than by interference. In characterizing throughput scaling and optimal hop distance of such power-limited networks, prior work have invoked a zero signal processing energy assumption, which led to the belief that whispering to the nearest neighbor (WtNN, with the average number of hops per source destination pair increasing with increasing node density) achieves the optimal throughput scaling. We show that this belief must be modified for power-limited networks when signal processing energy is not an insignificant factor. In fact, for a power-limited network with nodes uniformly randomly distributed in a bounded region and in the limit of interference-free operation, taking Theta(1) (i.e. does not increase or decrease with increasing node density) number of hops is throughput, energy, and delay optimal, achieving Theta(1) pairwise throughput, energy per bit, and packet delay under uniform traffic, whereas WtNN is strictly suboptimal, achieving a pairwise throughput of O(logradic( n/ n)), which decreases with increasing node density. In addition, we show that a constant characteristic hop distance of d[subscript char] simultaneously achieves the pairwise throughput scaling and minimum network energy consumption for random networks.en
dc.description.sponsorshipNational Science Foundation (grant ANI-0335256)en
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.isversionofhttp://dx.doi.org/10.1109/twc.2009.080762en
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en
dc.sourceIEEEen
dc.titleImpact of signal processing energy and large bandwidth on infrastructureless wireless network routing and scalabilityen
dc.typeArticleen
dc.identifier.citationDai, L., and V. Chan. “Impact of signal processing energy and large bandwidth on infrastructureless wireless network routing and scalability.” Wireless Communications, IEEE Transactions on 8.6 (2009): 3112-3121. © 2009 IEEEen
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverChan, Vincent W. S.
dc.contributor.mitauthorDai, Lillian L.
dc.contributor.mitauthorChan, Vincent W. S.
dc.relation.journalIEEE Transactions on Wireless Communicationsen
dc.eprint.versionFinal published versionen
dc.type.urihttp://purl.org/eprint/type/JournalArticleen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
dspace.orderedauthorsDai, L.; Chan, V.en
dc.identifier.orcidhttps://orcid.org/0000-0002-8274-6636
mit.licensePUBLISHER_POLICYen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record