Show simple item record

dc.contributor.authorChen, Harr
dc.contributor.authorBranavan, Satchuthanan R.
dc.contributor.authorBarzilay, Regina
dc.contributor.authorKarger, David R.
dc.date.accessioned2010-03-11T20:38:04Z
dc.date.available2010-03-11T20:38:04Z
dc.date.issued2009-10
dc.date.submitted2009-04
dc.identifier.issn1076-9757
dc.identifier.urihttp://hdl.handle.net/1721.1/52525
dc.description.abstractWe present a novel Bayesian topic model for learning discourse-level document structure. Our model leverages insights from discourse theory to constrain latent topic assignments in a way that reflects the underlying organization of document topics. We propose a global model in which both topic selection and ordering are biased to be similar across a collection of related documents. We show that this space of orderings can be effectively represented using a distribution over permutations called the Generalized Mallows Model. We apply our method to three complementary discourse-level tasks: cross-document alignment, document segmentation, and information ordering. Our experiments show that incorporating our permutation-based model in these applications yields substantial improvements in performance over previously proposed methods.en
dc.description.sponsorshipMicrosoft Faculty Fellowshipen
dc.description.sponsorshipNokiaen
dc.description.sponsorshipQuantaen
dc.description.sponsorshipUnited States. Offce of Naval Researchen
dc.description.sponsorshipNational Science Foundation (CAREER grant IIS-0448168 and grant IIS-0712793; and Graduate Fellowship)en
dc.language.isoen_US
dc.publisherAI Access Foundationen
dc.relation.isversionofhttp://dx.doi.org/10.1613/jair.2830en
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en
dc.sourceAmy Stout / webpageen
dc.titleContent Modeling Using Latent Permutationsen
dc.typeArticleen
dc.identifier.citationH. Chen, S.R.K. Branavan, R. Barzilay and D. R. Karger (2009) "Content Modeling Using Latent Permutations", Journal of Artificial Intelligence Research. Volume 36, pages 129-163. © 2009 AI Access Foundation.en
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverKarger, David R.
dc.contributor.mitauthorChen, Harr
dc.contributor.mitauthorBranavan, Satchuthanan R.
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorKarger, David R.
dc.relation.journalJournal of Artificial Intelligence Researchen
dc.eprint.versionFinal published versionen
dc.type.urihttp://purl.org/eprint/type/JournalArticleen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
dspace.orderedauthorsChen, Harr; Branavan, S.R.K.; Barzilay, Regina; Karger, David R.
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-0024-5847
mit.licensePUBLISHER_POLICYen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record