dc.contributor.author | Chen, Harr | |
dc.contributor.author | Branavan, Satchuthanan R. | |
dc.contributor.author | Barzilay, Regina | |
dc.contributor.author | Karger, David R. | |
dc.date.accessioned | 2010-03-11T20:38:04Z | |
dc.date.available | 2010-03-11T20:38:04Z | |
dc.date.issued | 2009-10 | |
dc.date.submitted | 2009-04 | |
dc.identifier.issn | 1076-9757 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/52525 | |
dc.description.abstract | We present a novel Bayesian topic model for learning discourse-level document structure. Our model leverages insights from discourse theory to constrain latent topic assignments in a way that reflects the underlying organization of document topics. We propose a global model in which both topic selection and ordering are biased to be similar across a collection of related documents. We show that this space of orderings can be effectively represented using a distribution over permutations called the Generalized Mallows Model. We apply our method to three complementary discourse-level tasks: cross-document alignment, document segmentation, and information ordering. Our experiments show that incorporating our permutation-based model in these applications yields substantial improvements in performance over previously proposed methods. | en |
dc.description.sponsorship | Microsoft Faculty Fellowship | en |
dc.description.sponsorship | Nokia | en |
dc.description.sponsorship | Quanta | en |
dc.description.sponsorship | United States. Offce of Naval Research | en |
dc.description.sponsorship | National Science Foundation (CAREER grant IIS-0448168 and grant IIS-0712793; and Graduate Fellowship) | en |
dc.language.iso | en_US | |
dc.publisher | AI Access Foundation | en |
dc.relation.isversionof | http://dx.doi.org/10.1613/jair.2830 | en |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en |
dc.source | Amy Stout / webpage | en |
dc.title | Content Modeling Using Latent Permutations | en |
dc.type | Article | en |
dc.identifier.citation | H. Chen, S.R.K. Branavan, R. Barzilay and D. R. Karger (2009) "Content Modeling Using Latent Permutations", Journal of Artificial Intelligence Research. Volume 36, pages 129-163. © 2009 AI Access Foundation. | en |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Karger, David R. | |
dc.contributor.mitauthor | Chen, Harr | |
dc.contributor.mitauthor | Branavan, Satchuthanan R. | |
dc.contributor.mitauthor | Barzilay, Regina | |
dc.contributor.mitauthor | Karger, David R. | |
dc.relation.journal | Journal of Artificial Intelligence Research | en |
dc.eprint.version | Final published version | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en |
dspace.orderedauthors | Chen, Harr; Branavan, S.R.K.; Barzilay, Regina; Karger, David R. | |
dc.identifier.orcid | https://orcid.org/0000-0002-2921-8201 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0024-5847 | |
mit.license | PUBLISHER_POLICY | en |
mit.metadata.status | Complete | |