MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

Author(s)
Gu, Zheng-Cheng; Wen, Xiao-Gang
Thumbnail
DownloadGu-2009-Tensor-entanglement.pdf (634.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T[subscript inv] plus the symmetry group G[subscript sym] of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, as illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G[subscript sym],T[subscript inv]) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G[subscript sym],T[subscript inv]) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/52528
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Gu, Zheng-Cheng , and Xiao-Gang Wen. “Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order.” Physical Review B 80.15 (2009): 155131. © 2009 The American Physical Society
Version: Final published version
ISSN
1550-235X
1098-0121

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.