Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling
Author(s)
Aldridge, Bree B.; Saez-Rodriguez, Julio; Muhlich, Jeremy L.; Sorger, Peter K.; Lauffenburger, Douglas A.
DownloadAldridge-2009-Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNFEGFInsulin-Induced Signaling.pdf (1.409Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
When modeling cell signaling networks, a balance must be struck between mechanistic detail and ease of interpretation. In this paper we apply a fuzzy logic framework to the analysis of a large, systematic dataset describing the dynamics of cell signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma cells. Simulations based on fuzzy logic recapitulate most features of the data and generate several predictions involving pathway crosstalk and regulation. We uncover a relationship between MK2 and ERK pathways that might account for the previously identified pro-survival influence of MK2. We also find unexpected inhibition of IKK following EGF treatment, possibly due to down-regulation of autocrine signaling. More generally, fuzzy logic models are flexible, able to incorporate qualitative and noisy data, and powerful enough to produce quantitative predictions and new biological insights about the operation of signaling networks.
Date issued
2007-12Department
Massachusetts Institute of Technology. Department of Biological EngineeringJournal
PLoS Computational Biology
Publisher
Public Library of Science
Citation
Aldridge, Bree B. et al. “Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling.” PLoS Comput Biol 5.4 (2009): e1000340.
Version: Final published version
ISSN
1553-7358