MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sub-population analysis based on temporal features of high content images

Author(s)
Rajapakse, Jagath; Matsudaira, Paul T.; Evans, James; Welsch, Roy E.; Veronika, Merlin
Thumbnail
DownloadVeronika-2009-Sub-population analy.pdf (1.258Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0/
Metadata
Show full item record
Abstract
Background: High content screening techniques are increasingly used to understand the regulation and progression of cell motility. The demand of new platforms, coupled with availability of terabytes of data has challenged the traditional technique of identifying cell populations by manual methods and resulted in development of high-dimensional analytical methods. Results: In this paper, we present sub-populations analysis of cells at the tissue level by using dynamic features of the cells. We used active contour without edges for segmentation of cells, which preserves the cell morphology, and autoregressive modeling to model cell trajectories. The sub-populations were obtained by clustering static, dynamic and a combination of both features. We were able to identify three unique sub-populations in combined clustering. Conclusion: We report a novel method to identify sub-populations using kinetic features and demonstrate that these features improve sub-population analysis at the tissue level. These advances will facilitate the application of high content screening data analysis to new and complex biological problems.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/52543
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Sloan School of Management; Whitehead Institute for Biomedical Research
Journal
BMC Bioinformatics
Publisher
BioMed Central
Citation
Veronika, Merlin et al. “Sub-population analysis based on temporal features of high content images.” BMC Bioinformatics 10.Suppl 15 (2009): S4.
Version: Final published version
ISSN
1471-2105

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.