MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-impurity Kondo model with spin-orbit interactions

Author(s)
Mross, David Fabian; Johannesson, Henrik
Thumbnail
DownloadMross-2009-Two-impurity Kondo.pdf (270.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study the two-impurity Kondo model (TIKM) in two dimensions with spin-orbit coupled conduction electrons. In the first part of the paper we analyze how spin-orbit interactions of Rashba as well as Dresselhaus type influence the Kondo and Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions in the TIKM, generalizing results obtained by H. Imamura et al. [Phys. Rev. B 69, 121303(R) (2004)] and J. Malecki [J. Stat. Phys. 129, 741 (2007)]. Using our findings we then explore the effect from spin-orbit interactions on the non-Fermi-liquid quantum critical transition between the RKKY-singlet and Kondo-screened RKKY-triplet states. We argue that spin-orbit interactions under certain conditions produce a line of critical points exhibiting the same leading scaling behavior as that of the ordinary TIKM. In the second part of the paper we shift focus and turn to the question of how spin-orbit interactions affect the entanglement between two localized RKKY-coupled spins in the parameter regime where the competition from the direct Kondo interaction can be neglected. Using data for a device with two spinful quantum dots patterned in a gated InAs heterostructure we show that a gate-controlled spin-orbit interaction may drive a maximally entangled state to one with vanishing entanglement or vice versa (as measured by the concurrence). This has important implications for proposals using RKKY interactions for nonlocal control of qubit entanglement in semiconductor heterostructures.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/52615
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Mross, David F., and Henrik Johannesson. “Two-impurity Kondo model with spin-orbit interactions.” Physical Review B 80.15 (2009): 155302. © 2009 The American Physical Socie
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.