MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optonanomechanical self-adaptive photonic devices based on light forces: A path to robust high-index-contrast nanophotonic circuits

Author(s)
Popovic, Milos; Rakich, Peter T.
Thumbnail
DownloadPopovic-2009-Optonanomechanical self-adaptive photonic devices based on light forces.pdf (1.565Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We describe a proposed new class of optonanomechanical integrated photonic devices that can have self-adaptive behavior and self-adaptive optical frequency response, through the use of optical forces to manipulate their movable parts. We propose applications for this technology, and show how such devices can address the enormous dimensional and thermal sensitivity present in nanophotonic structures. Through synthesis of the optomechanical potential, we propose to design and control either the effective optical, or the mechanical, properties of the nanostructure, such as a giant effective optical nonlinear response, nonlinear dynamics and memory. We show device designs that can trap desired states at picometer resolution. We also describe the design of a novel, self-tuning microcavity design whose moving parts adjust in response to light forces alone to always place the resonance at the wavelength of the incident light over a wide wavelength range. This device concept provides an athermal resonator design (temperature-independent resonance frequency), without use of materials with negative thermooptic coefficients. It could also address a major challenge with conventional strong-confinement (high-index-contrast) integrated photonics - their extreme sensitivities - through a self-locking filter bank and optical cross-connect proposal, that in principle can use arbitrarily low power to trim resonant filter passbands to a wavelength channel grid.
Date issued
2009-02
URI
http://hdl.handle.net/1721.1/52628
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of SPIE--the International Society for Optical Engineering
Publisher
Society of Photo-Optical Instrumentation Engineers
Citation
Popovic, Milos A., and Peter T. Rakich. “Optonanomechanical self-adaptive photonic devices based on light forces: a path to robust high-index-contrast nanophotonic circuits.” Optoelectronic Integrated Circuits XI. Ed. Louay A. Eldada & El-Hang Lee. San Jose, CA, USA: SPIE, 2009. 72190A-11. © 2009 SPIE
Version: Final published version
Other identifiers
SPIE CID: 72190A-11
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.