MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lithographically directed materials assembly

Author(s)
Fedynyshyn, Theodore H.; Krohn, Keith E.; Goodman, Russell B.; Kingsborough, Richard P.
Thumbnail
DownloadKingsborough-2009-Lithographically directed materials assembly.pdf (1.196Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We have developed a processing method that significantly reduces the number of steps necessary to yield a surface that directs block copolymer assembly. This methodology employs a single resistless lithography step that directly changes the surface energy without requiring subsequent material deposition or plasma etching steps. The lithographically defined difference in surface energies acts as a template to direct diblock polymer self-assembly into low-defect periodic structures. Our newly developed lithographically directed self-assembly technique can produce sub-45 nm half pitch lines employing poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and interference lithography. Once assembled into periodic lines of alternating materials, the PMMA block can be removed and the resulting polystyrene features can be used as an etch mask to transfer periodic lines-and-spaces into a silicon substrate.
Date issued
2009-03
URI
http://hdl.handle.net/1721.1/52659
Department
Lincoln Laboratory
Journal
Proceedings of SPIE
Publisher
The International Society for Optical Engineering
Citation
Kingsborough, Richard P. et al. “Lithographically directed materials assembly.” Alternative Lithographic Technologies. Ed. Frank M. Schellenberg & Bruno M. La Fontaine. San Jose, CA, USA: SPIE, 2009. 72712D-10. © 2009 SPIE--The International Society for Optical Engineering
Version: Final published version
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.