MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse algebraic reconstruction for fluorescence mediated tomography

Author(s)
Ortiz-de-Solorzano, Carlos; Pengo, Thomas S.; Muñoz-Barrutia, Arrate; Pardo, Carlos
Thumbnail
DownloadMunoz-Barrutia-2009-Sparse algebraic reconstruction for fluorescence mediated tomography.pdf (712.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we explore the use of anatomical information as a guide in the image formation process of fluorescence molecular tomography (FMT). Namely, anatomical knowledge obtained from high resolution computed tomography (micro-CT) is used to construct a model for the diffusion of light and to constrain the reconstruction to areas candidate to contain fluorescent volumes. Moreover, a sparse regularization term is added to the state-of-the-art least square solution to contribute to the sparsity of the localization. We present results showing the increase in accuracy of the combined system over conventional FMT, for a simulated experiment of lung cancer detection in mice.
Date issued
2009-09
URI
http://hdl.handle.net/1721.1/52728
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Proceedings of SPIE--the International Society for Optical Engineering; v.7446
Publisher
The International Society for Optical Engineering
Citation
Munoz-Barrutia, Arrate et al. “Sparse algebraic reconstruction for fluorescence mediated tomography.” Wavelets XIII. Ed. Vivek K. Goyal, Manos Papadakis, & Dimitri Van De Ville. San Diego, CA, USA: SPIE, 2009. 744604-10. © 2009 SPIE--The International Society for Optical Engineering
Version: Final published version
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.