Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views
Author(s)
Tieu, Kinh Han; Wang, Xiaogang
DownloadWang-2010-Correspondence-Free.pdf (4.788Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We propose a novel approach for activity analysis in multiple synchronized but uncalibrated static camera views. In this paper, we refer to activities as motion patterns of objects, which correspond to paths in far-field scenes. We assume that the topology of cameras is unknown and quite arbitrary, the fields of views covered by these cameras may have no overlap or any amount of overlap, and objects may move on different ground planes. Using low-level cues, objects are first tracked in each camera view independently, and the positions and velocities of objects along trajectories are computed as features. Under a probabilistic model, our approach jointly learns the distribution of an activity in the feature spaces of different camera views. Then, it accomplishes the following tasks: 1) grouping trajectories, which belong to the same activity but may be in different camera views, into one cluster; 2) modeling paths commonly taken by objects across multiple camera views; and 3) detecting abnormal activities. Advantages of this approach are that it does not require first solving the challenging correspondence problem, and that learning is unsupervised. Even though correspondence is not a prerequisite, after the models of activities have been learned, they can help to solve the correspondence problem, since if two trajectories in different camera views belong to the same activity, they are likely to correspond to the same object. Our approach is evaluated on a simulated data set and two very large real data sets, which have 22,951 and 14,985 trajectories, respectively.
Date issued
2009-11Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
IEEE Transactions on Pattern Analysis and Machine Intelligence
Publisher
Institute of Electrical and Electronics Engineers
Citation
Xiaogang Wang, Kinh Tieu, and E.L. Grimson. “Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views.” Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.1 (2010): 56-71. ©
2009 Institute of Electrical and Electronics Engineers.
Version: Final published version
Other identifiers
INSPEC Accession Number: 10985547
ISSN
0162-8828
Keywords
activity analysis in multiple camera views, visual surveillance, video analysis, tracking, scene analysis, motion, computer vision, clustering