MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Quantum Theory of Optical Communications

Author(s)
Shapiro, Jeffrey H.
Thumbnail
DownloadShapiro-2009-The Quantum Theory o.pdf (717.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Communication theory applied to lightwave channels is ordinarily carried out using the semiclassical theory of photodetection. Recent development of nonclassical light sources-whose photodetection statistics require the use of quantum theory-plus increasing interest in optics-based approaches to quantum information processing necessitates a thorough understanding of the similarities and distinctions between the semiclassical and quantum theories of optical communications. This paper is addressed to that need, focusing, for convenience, on the free-space communication channel using Gaussian states of light. The quantum version of the Huygens-Fresnel diffraction integral is reviewed, along with the semiclassical and quantum theories of direct, homodyne, and heterodyne detection. Maximally entangled Gaussian state light is used, in conjunction with quantum photodetection theory, to explain the nonclassical effects seen in Hong-Ou-Mandel interferometry and violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality. The classical information capacities of several bosonic channels are reviewed, and shown to exceed what can be achieved using conventional optical receivers.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/53583
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Journal of Selected Topics in Quantum Electronics
Publisher
Institute of Electrical and Electronics Engineers
Citation
Shapiro, J.H. “The Quantum Theory of Optical Communications.” Selected Topics in Quantum Electronics, IEEE Journal of 15.6 (2009): 1547-1569. © 2009 IEEE
Version: Final published version
ISSN
1077-260X
Keywords
quantum theory, photon beams, optical diffraction, Optical communication

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.