Show simple item record

dc.contributor.authorWen, Yang
dc.contributor.authorAntoniou, Constantinos
dc.contributor.authorLopes, Jorge Alves
dc.contributor.authorBento, Joao
dc.contributor.authorHuang, Enyang
dc.contributor.authorBen-Akiva, Moshe E
dc.date.accessioned2010-05-04T19:21:14Z
dc.date.available2010-05-04T19:21:14Z
dc.date.issued2009-11
dc.identifier.isbn978-1-4244-5519-5
dc.identifier.urihttp://hdl.handle.net/1721.1/54705
dc.description.abstractThis paper presents a model-based data fusion framework that allows systematic fusing of multi-sensor multi-source traffic network data at real-time. Using simulation-based Dynamic Traffic Assignment (DTA) models, the framework seeks to minimize the inconsistencies between observed network data and the model estimates using a variant of the Hooke-Jeeves Pattern Search. An empirical validation is provided on the Brisa A5 Inter-City Motorway in the West coast of Portugal. The real-time network data provided by loop detectors, video cameras and toll counters is collected and fused within DynaMIT, a state-of-the-art DTA system. State estimation is first performed, yielding consistent approximation of the network condition. This is then followed by network state forecast, showing significantly improved Normalized Root Mean Square Error (RMSN) over alternative predictive systems that do not use real-time information to correct themselves.en
dc.description.sponsorshipPortuguese Foundation for International Cooperation in Science, Technology and Higher Educationen
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.isversionofhttp://dx.doi.org/10.1109/ITSC.2009.5309859en
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en
dc.sourceIEEEen
dc.subjecttravel information and guidanceen
dc.subjecttraffic state analysis and predictionen
dc.subjectsimulation and modelingen
dc.subjectMulti-Sensor Fusionen
dc.titleReal-Time Multi-Sensor Multi-Source Network Data Fusion Using Dynamic Traffic Assignment Modelsen
dc.typeArticleen
dc.identifier.citationHuang, E. et al. “Real-time multi-sensor multi-source network data fusion using dynamic traffic assignment models.” Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on. 2009. 1-6. © 2009 IEEEen
dc.contributor.departmentMassachusetts Institute of Technology. Center for Transportation & Logisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Intelligent Transportation Systems Laboratoryen_US
dc.contributor.approverBen-Akiva, Moshe E.
dc.contributor.mitauthorBen-Akiva, Moshe E.
dc.contributor.mitauthorWen, Yang
dc.contributor.mitauthorAntoniou, Constantinos
dc.contributor.mitauthorHuang, Enyang
dc.relation.journal12th International IEEE Conference on Intelligent Transportation Systems, 2009. ITSC '09.en
dc.eprint.versionFinal published versionen
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
dspace.orderedauthorsHuang, E.; Antoniou, C.; Wen, Y.; Ben-Akiva, M.; Lopes, J.; Bento, J.en
dc.identifier.orcidhttps://orcid.org/0000-0003-0203-9542
mit.licensePUBLISHER_POLICYen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record