MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve

Author(s)
Dean, Isabel; Wen, Bo; Wang, Grace I.; Delgutte, Bertrand
Thumbnail
DownloadWen-2009-Dynamic range adapta.pdf (2.430Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The auditory system operates over a vast range of sound pressure levels (100–120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20–40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting toward the most frequently occurring level. Here, we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain and not sufficient (0.25 dB/dB, on average, for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway.
Date issued
2009-11
URI
http://hdl.handle.net/1721.1/55979
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Journal of Neuroscience
Publisher
Society for Neuroscience
Citation
Wen, Bo et al. “Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve.” J. Neurosci. 29.44 (2009): 13797-13808. © 2009 The Society for Neuroscience
Version: Final published version
ISSN
1529-2401

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.