Show simple item record

dc.contributor.authorLonini, Luca
dc.contributor.authorDipietro, Laura
dc.contributor.authorZollo, Loredana
dc.contributor.authorGuglielmelli, Eugenio
dc.contributor.authorKrebs, Hermano Igo
dc.date.accessioned2010-06-29T19:28:46Z
dc.date.available2010-06-29T19:28:46Z
dc.date.issued2009-06
dc.date.submitted2008-03
dc.identifier.issn0899-7667
dc.identifier.issn1530-888X
dc.identifier.urihttp://hdl.handle.net/1721.1/55996
dc.description.abstractHumans have the ability to learn novel motor tasks while manipulating the environment. Several models of motor learning have been proposed in the literature, but few of them address the problem of retention and interference ofmotor memory. The modular selection and identification for control (MOSAIC) model, originally proposed by Wolpert and Kawato, is one of the most relevant contributions; it suggests a possible strategy on how the human motor control system learns and adapts to novel environments. MOSAIC employs the concept of forward and inverse models. The same group later proposed the hidden Markov model (HMM) MOSAIC, which affords learning multiple tasks. The significant drawback of this second approach is that the HMM must be trained with a complete data set that includes all contexts. Since the number of contexts or modules is fixed from the onset, this approach does not afford incremental learning of new tasks. In this letter, we present an alternative architecture to overcome this problem, based on a nonparametric regression algorithm, named locally weighted projection regression (LWPR). This network structure develops according to the contexts allowing incremental training. Of notice, interaction force is used to disambiguate among different contexts. We demonstrate the capability of this alternative architecture with a simulated 2 degree-of-freedom representation of the human arm that learns to interact with three distinct objects, reproducing the same test paradigm of the HMM MOSAIC. After learning the dynamics of the three objects, the LWPR network successfully learns to compensate for a novel velocity-dependent force field. Equally important, it retains previously acquired knowledge on the interactionwith the three objects. Thus, this architecture allows both incremental learning of new tasks and retention of previously acquired knowledge, a feature of human motor learning and memory.en_US
dc.description.sponsorshipFP6-EU-IST-FET (NEUROBOTICSIST- 2003-001917)en_US
dc.description.sponsorshipNICHD-NCMRR (Grant 1 R01- HD045343)en_US
dc.description.sponsorshipNYSCOREen_US
dc.description.sponsorshipItalianMinistry of University and Research (INTERLINK-MOTHER)en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/neco.2009.03-08-721en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Pressen_US
dc.titleAn Internal Model for Acquisition and Retention of Motor Learning During Arm Reachingen_US
dc.typeArticleen_US
dc.identifier.citationLonini, Luca et al. “An Internal Model for Acquisition and Retention of Motor Learning During Arm Reaching.” Neural Computation 21.7 (2009): 2009-2027. ©2009 Massachusetts Institute of Technology.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Newman Laboratory for Biomechanics and Human Rehabilitationen_US
dc.contributor.approverKrebs, Hermano Igo
dc.contributor.mitauthorDipietro, Laura
dc.contributor.mitauthorKrebs, Hermano Igo
dc.relation.journalNeural Computationen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid19323640
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLonini, Luca; Dipietro, Laura; Zollo, Loredana; Guglielmelli, Eugenio; Krebs, Hermano Igoen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record