Show simple item record

dc.contributor.authorCummings, M. L.
dc.contributor.authorLas Fargeas, Jonathan C.
dc.contributor.authorRoy, Nicholas
dc.contributor.authorBoussemart, Yves
dc.date.accessioned2010-07-14T16:04:21Z
dc.date.available2010-07-14T16:04:21Z
dc.date.issued2009-04
dc.identifier.isbn9781563479717
dc.identifier.otherAIAA-2009-1842
dc.identifier.urihttp://hdl.handle.net/1721.1/56295
dc.description.abstractModels of human behaviors have been built using many different frameworks. In this paper, we make use of Hidden Markov Models (HMMs) applied to human supervisory control behaviors. More specifically, we model the behavior of an operator of multiple heterogeneous unmanned vehicle systems. The HMM framework allows the inference of higher operator cognitive states from observable operator interaction with a computer interface. For example, a sequence of operator actions can be used to compute a probability distribution of possible operator states. Such models are capable of detecting deviations from expected operator behavior as learned by the model. The difficulty with parametric inference models such as HMMs is that a large number of parameters must either be specified by hand or learned from example data. We compare the behavioral models obtained with two different supervised learning techniques and an unsupervised HMM training technique. The results suggest that the best models of human supervisory control behavior are obtained through unsupervised learning.en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.relation.isversionofhttp://www.aiaa.org/agenda.cfm?lumeetingid=2070&viewcon=agenda&pageview=2&programSeeview=1&dateget=07-Apr-09&formatview=3en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceauthor/dept web pageen_US
dc.titleComparing Learning Techniques for Hidden Markov Models of Human Supervisory Control Behavioren_US
dc.typeArticleen_US
dc.identifier.citationBoussemart, Yves et al. "Comparing Learning Techniques for Hidden Markov Models of Human Supervisory Control Behavior." AIAA Infotech@Aerospace'09 Conference and AIAA Unmanned...Unlimited Conference, 6-9 April 2009, Seattle, Washington.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Humans and Automation Laben_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.approverCummings, M. L.
dc.contributor.mitauthorCummings, M. L.
dc.contributor.mitauthorLas Fargeas, Jonathan C.
dc.contributor.mitauthorRoy, Nicholas
dc.contributor.mitauthorBoussemart, Yves
dc.relation.journalAIAA Infotech@Aerospace'09 Conference, Seattle, Washingtonen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsBoussemart, Yves; Las Fargeas, Jonathan; Cummings, Mary L.; Roy, Nicholas
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record