dc.contributor.author | Sundararajan, Pranesh A. | |
dc.contributor.author | Khanna, Gaurav | |
dc.contributor.author | Hughes, Scott A | |
dc.date.accessioned | 2010-07-15T13:45:36Z | |
dc.date.available | 2010-07-15T13:45:36Z | |
dc.date.issued | 2010-05 | |
dc.date.submitted | 2010-03 | |
dc.identifier.issn | 1089-4918 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/56556 | |
dc.description.abstract | Spectacular breakthroughs in numerical relativity now make it possible to compute spacetime
dynamics in almost complete generality, allowing us to model the coalescence and merger of binary
black holes with essentially no approximations. The primary limitation of these calculations is
now computational. In particular, it is difficult to model systems with large mass ratio and large
spins, since one must accurately resolve the multiple lengthscales which play a role in such systems.
Perturbation theory can play an important role in extending the reach of computational modeling
for binary systems. In this paper, we present first results of a code which allows us to model the
gravitational waves generated by the inspiral, merger, and ringdown of a binary system in which one
member of the binary is much more massive than the other. This allows us to accurately calibrate
binary dynamics in the large mass ratio regime. We focus in this analysis on the recoil imparted to
the merged remnant by these waves. We closely examine the “antikick,” an anti-phase cancellation
of the recoil arising from the plunge and ringdown waves, described in detail by Schnittman et al.
We find that, for orbits aligned with the black hole spin, the antikick grows as a function of spin.
The total recoil is smallest for prograde coalescence into a rapidly rotating black hole, and largest
for retrograde coalescence. Amusingly, this completely reverses the predicted trend for kick versus
spin from analyses that only include inspiral information. | en_US |
dc.description.sponsorship | National Aeronautics and Space Administration (Grant No. NNG05G105G) | en_US |
dc.description.sponsorship | National Science Foundation (Grant No. PHY-0449884) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevD.81.104009 | en_US |
dc.rights | Attribution-Noncommercial-Share Alike 3.0 Unported | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | author/dept web page | en_US |
dc.title | Binary black hole merger gravitational waves and recoil in the large mass ratio limit | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Sundararajan, Pranesh A., Gaurav Khanna, and Scott A. Hughes. “Binary black hole merger gravitational waves and recoil in the large mass ratio limit.” Physical Review D 81.10 (2010): 104009. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.department | MIT Kavli Institute for Astrophysics and Space Research | en_US |
dc.contributor.approver | Hughes, Scott A. | |
dc.contributor.mitauthor | Hughes, Scott A. | |
dc.contributor.mitauthor | Sundararajan, Pranesh A. | |
dc.relation.journal | Physical Review D | en_US |
dc.eprint.version | Author's final manuscript | |
dc.type.uri | http://purl.org/eprint/type/SubmittedJournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Sundararajan, Pranesh A.; Khanna, Gaurav; Hughes, Scott A. | en |
dc.identifier.orcid | https://orcid.org/0000-0001-6211-1388 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |