Show simple item record

dc.contributor.authorIsaac, Delfina F.
dc.contributor.authorIerome, Steve
dc.contributor.authorDutta, Haimonti
dc.contributor.authorRadeva, Axinia
dc.contributor.authorPassonneau, Rebecca J.
dc.contributor.authorRudin, Cynthia
dc.date.accessioned2010-07-19T18:01:14Z
dc.date.available2010-07-19T18:01:14Z
dc.date.issued2010-07
dc.date.submitted2009-11
dc.identifier.issn0885-6125
dc.identifier.issn1573-0565
dc.identifier.urihttp://hdl.handle.net/1721.1/57432
dc.description.abstractWe present a knowledge discovery and data mining process developed as part of the Columbia/Con Edison project on manhole event prediction. This process can assist with real-world prioritization problems that involve raw data in the form of noisy documents requiring significant amounts of pre-processing. The documents are linked to a set of instances to be ranked according to prediction criteria. In the case of manhole event prediction, which is a new application for machine learning, the goal is to rank the electrical grid structures in Manhattan (manholes and service boxes) according to their vulnerability to serious manhole events such as fires, explosions and smoking manholes. Our ranking results are currently being used to help prioritize repair work on the Manhattan electrical grid.en_US
dc.language.isoen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10994-009-5166-yen_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceCynthia Rudinen_US
dc.subjectManhole eventsen_US
dc.subjectApplications of machine learningen_US
dc.subjectRankingen_US
dc.subjectKnowledge discoveryen_US
dc.titleA Process for Predicting Manhole Events in Manhattanen_US
dc.typeArticleen_US
dc.identifier.citationRudin, Cynthia. et al. "A process for predicting manhole events in Manhattan." Mach Learn (2010) 80: 1–31en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.approverRudin, Cynthia
dc.contributor.mitauthorRudin, Cynthia
dc.relation.journalMachine Learningen_US
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/SubmittedJournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRudin, Cynthia; Passonneau, Rebecca J.; Radeva, Axinia; Dutta, Haimonti; Ierome, Steve; Isaac, Delfinaen
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record