Show simple item record

dc.contributor.authorBratlie, Kaitlin M.
dc.contributor.authorDang, Tram T.
dc.contributor.authorLyle, Stephen
dc.contributor.authorNahrendorf, Matthias
dc.contributor.authorWeissleder, Ralph
dc.contributor.authorLanger, Robert
dc.contributor.authorAnderson, Daniel G.
dc.date.accessioned2010-08-04T13:25:45Z
dc.date.available2010-08-04T13:25:45Z
dc.date.issued2010-04
dc.date.submitted2010-01
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/57466
dc.description.abstractBackground: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. Methodology/Principal Findings: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. Conclusions/Significance: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.en_US
dc.description.sponsorshipJuvenile Diabetes Research Foundation (grant 17-2007-1063)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0010032en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleRapid Biocompatibility Analysis of Materials via In Vivo Fluorescence Imaging of Mouse Modelsen_US
dc.typeArticleen_US
dc.identifier.citationBratlie KM, Dang TT, Lyle S, Nahrendorf M, Weissleder R, et al. 2010 Rapid Biocompatibility Analysis of Materials via In Vivo Fluorescence Imaging of Mouse Models. PLoS ONE 5(4): e10032. doi:10.1371/journal.pone.0010032en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.approverAnderson, Daniel G.
dc.contributor.mitauthorBratlie, Kaitlin M.
dc.contributor.mitauthorDang, Tram T.
dc.contributor.mitauthorLanger, Robert
dc.contributor.mitauthorAnderson, Daniel Griffith
dc.relation.journalPLoS Oneen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid20386609
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBratlie, Kaitlin M.; Dang, Tram T.; Lyle, Stephen; Nahrendorf, Matthias; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.en
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record