Charged and strange hadron elliptic flow in Cu+Cu collisions at [sqrt]sNN=62.4 and 200 GeV
Author(s)
Surrow, Bernd; Balewski, Jan T.; Betancourt, Michael Joseph; Corliss, Ross Cameron; Hays-Wehle, James Prewitt; Jones, Christopher LaDon; Kocoloski, Adam Philip; Leight, William Axel; Sakuma, Tai; Seele, Joseph Patrick; Hoffman, Alan Michael; Milner, Richard G; Redwine, Robert P; van Nieuwenhuizen, Gerrit J; Walker, Matthew H; ... Show more Show less
DownloadAbelev-2010-Charged and strange.pdf (943.6Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Alternative title
Charged and strange hadron elliptic flow in Cu+Cu collisions at √sNN=62.4 and 200 GeV
Terms of use
Metadata
Show full item recordAbstract
We present the results of an elliptic flow, v2, analysis of Cu+Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at √sNN=62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v2(pT), is reported for different collision centralities for charged hadrons h± and strangeness-ontaining hadrons KS0, Λ, Ξ, and ϕ in the midrapidity region |η|<1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, |η|<1.0, with those at forward rapidity, 2.5<|η|<4.0. We also present azimuthal correlations in p+p collisions at √s=200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at √sNN=200 GeV. We observe that v2(pT) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, that is, (i) at low transverse momenta, pT<2 GeV/c, v2 scales with transverse kinetic energy, mT-m, and (ii) at intermediate pT, 2<pT<4 GeV/c, it scales with the number of constituent quarks, nq. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2(pT) for KS0 and Λ. Eccentricity scaled v2 values, v2/ɛ, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions, which go further in density, shows that v2/ɛ depends on the system size, that is, the number of participants Npart. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.
Date issued
2010-04Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear ScienceJournal
Physical Review C
Publisher
American Physical Society
Citation
STAR Collaboration et al. “Charged and strange hadron elliptic flow in Cu+Cu collisions at [sqrt]sNN=62.4 and 200 GeV.” Physical Review C 81.4 (2010): 044902. © 2010 The American Physical Society.
Version: Final published version
ISSN
0556-2813