MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector

Author(s)
Adalsteinsson, Elfar; Zelinski, Adam C.; Goyal, Vivek K.
Thumbnail
DownloadZelinski-2010-SIMULTANEOUSLY SPARS.pdf (418.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A problem that arises in slice-selective magnetic resonance imaging (MRI) radio-frequency (RF) excitation pulse design is abstracted as a novel linear inverse problem with a simultaneous sparsity constraint. Multiple unknown signal vectors are to be determined, where each passes through a different system matrix and the results are added to yield a single observation vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set of unknown vectors that approximately solves the system. We refer to this as the multiple-system single-output (MSSO) simultaneous sparse approximation problem. This manuscript contrasts the MSSO problem with other simultaneous sparsity problems and conducts an initial exploration of algorithms with which to solve it. Greedy algorithms and techniques based on convex relaxation are derived and compared empirically. Experiments involve sparsity pattern recovery in noiseless and noisy settings and MRI RF pulse design.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/57584
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Zelinski, Adam C., Vivek K. Goyal, and Elfar Adalsteinsson. “Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector.” SIAM Journal on Scientific Computing 31.6 (2010): 4533-4579. ©2010 Society for Industrial and Applied Mathematics.
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.