MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Templated self-assembly of Si-containing block copolymers for nanoscale device fabrication

Author(s)
Ross, Caroline A.; Manners, I.; Gwyther, J.; Jung, Yeon Sik; Chuang, Vivian Peng-Wei; Son, Jeong Gon; Gotrik, Kevin W.; Mickiewicz, R. A.; Yang, Joel K. W.; Chang, J. B.; Berggren, Karl K.; ... Show more Show less
Thumbnail
DownloadRoss-2010-Templated self-assembly.pdf (2.009Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Block copolymers have been proposed for self-assembled nanolithography because they can spontaneously form well-ordered nanoscale periodic patterns of lines or dots in a rapid, low-cost process. By templating the selfassembly, patterns of increasing complexity can be generated, for example arrays of lines with bends or junctions. This offers the possibility of using a sparse template, written by electron-beam lithography or other means, to organize a dense array of nanoscale features. Pattern transfer is simplified if one block is etch resistant and one easily removable, and in this work we use a diblock copolymer or a triblock terpolymer with one Sicontaining block such as polydimethylsiloxane or polyferrocenylsilane, and one or two organic blocks such as polystyrene or polyisoprene. Removal of the organic block(s) with an oxygen plasma leaves a pattern of Sicontaining material which can be used as an etch mask for subsequent pattern transfer to make metallization lines or magnetic nanostructures with feature sizes below 10 nm and periodicity below 20 nm.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/58560
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Proceedings of SPIE--the International Society for Optical Engineering
Publisher
SPIE
Citation
Ross, C. A. et al. “Templated self-assembly of Si-containing block copolymers for nanoscale device fabrication.” Alternative Lithographic Technologies II. Ed. Daniel J. C. Herr. San Jose, California, USA: SPIE, 2010. 76370H-7. ©2010 SPIE.
Version: Final published version
Other identifiers
Proc. SPIE, Vol. 7637, 76370H (2010)
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.