Show simple item record

dc.contributor.authorShin, Yongdae
dc.contributor.authorBrau, Ricardo R.
dc.contributor.authorMartin, Andreas
dc.contributor.authorKenniston, Jon A.
dc.contributor.authorLang, Matthew J.
dc.contributor.authorBaker, Tania
dc.contributor.authorDavis, Joseph Harry
dc.contributor.authorSauer, Robert T
dc.date.accessioned2010-09-17T13:36:36Z
dc.date.available2010-09-17T13:36:36Z
dc.date.issued2009-11
dc.date.submitted2009-09
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/1721.1/58579
dc.descriptionThis article contains supporting information online at www.pnas.org/cgi/content/full/ 0910484106/DCSupplemental.en_US
dc.description.abstractClpXP is an ATP-fueled molecular machine that unfolds and degrades target proteins. ClpX, an AAA+ enzyme, recognizes specific proteins, and then uses cycles of ATP hydrolysis to denature any native structure and to translocate the unfolded polypeptide into ClpP for degradation. Here, we develop and apply single-molecule fluorescence assays to probe the kinetics of protein denaturation and degradation by ClpXP. These assays employ a single-chain variant of the ClpX hexamer, linked via a single biotin to a streptavidin-coated surface, and fusion substrates with an Nterminal fluorophore and a C-terminal GFP-titin-ssrA module. In the presence of adenosine 5'-[γ-thio]triphosphate (ATPγS), ClpXP degrades the titin-ssrA portion of these substrates but stalls when it encounters GFP. Exchange into ATP then allows synchronous resumption of denaturation and degradation of GFP and any downstream domains. GFP unfolding can be monitored directly, because intrinsic fluorescence is quenched by denaturation. The time required for complete degradation coincides with loss of the substrate fluorophore from the protease complex. Fitting singlemolecule data for a set of related substrates provides time constants for ClpX unfolding, translocation, and a terminal step that may involve product release. Comparison of these single-molecule results with kinetics measured in bulk solution indicates similar levels of microscopic and macroscopic ClpXP activity. These results support a stochastic engagement/unfolding mechanism that ultimately results in highly processive degradation and set the stage for more detailed single-molecule studies of machine function.en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipNational Institutes of Health (U.S) (AI-15706)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award 0643745)en_US
dc.description.sponsorshipSamsŏng Munhwa Chaedan (Korea) (Samsung Scholarship)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciencesen_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.0910484106en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.subjectmolecular machineen_US
dc.subjectprotein degradationen_US
dc.subjectsingle-molecule fluorescenceen_US
dc.subjectprotein unfoldingen_US
dc.subjectprotein translocationen_US
dc.titleSingle-molecule denaturation and degradation of proteins by the AAA+ ClpXP proteaseen_US
dc.typeArticleen_US
dc.identifier.citationYongdae Shin, Joseph H. Davis, Ricardo R. Brau, Andreas Martin, Jon A. Kenniston, Tania A. Baker, Robert T. Sauer, and Matthew J. Lang (2009). Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. PNAS 106: 19340-19345. ©2009 by the National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverLang, Matthew J.
dc.contributor.mitauthorShin, Yongdae
dc.contributor.mitauthorBrau, Ricardo R.
dc.contributor.mitauthorMartin, Andreas
dc.contributor.mitauthorKenniston, Jon A.
dc.contributor.mitauthorSauer, Robert T.
dc.contributor.mitauthorLang, Matthew J.
dc.contributor.mitauthorBaker, Tania
dc.contributor.mitauthorDavis, Joseph Harry
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid19892734
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsShin, Y.; Davis, J. H.; Brau, R. R.; Martin, A.; Kenniston, J. A.; Baker, T. A.; Sauer, R. T.; Lang, M. J.en
dc.identifier.orcidhttps://orcid.org/0000-0002-4614-251X
dc.identifier.orcidhttps://orcid.org/0000-0002-1719-5399
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record