Show simple item record

dc.contributor.authorKim, Kyoung A.E.
dc.contributor.authorSpencer, Sabrina L.
dc.contributor.authorAlbeck, John G.
dc.contributor.authorBurke, John M.
dc.contributor.authorSorger, Peter K.
dc.contributor.authorGaudet, Suzanne
dc.contributor.authorKim, Do Hyun
dc.date.accessioned2010-09-23T13:56:05Z
dc.date.available2010-09-23T13:56:05Z
dc.date.issued2010-04
dc.date.submitted2009-06
dc.identifier.issn1471-2105
dc.identifier.urihttp://hdl.handle.net/1721.1/58679
dc.description.abstractBackground: Mathematical modeling is being applied to increasingly complex biological systems and datasets; however, the process of analyzing and calibrating against experimental data is often challenging and a rate limiting step in model development. To address this problem, we developed a systematic methodology for calibrating quantitative models of dynamic biological processes and illustrate its utility by validating a model of TRAIL (Tumor necrosis factor Related Apoptosis-Inducing Ligand)-induced cell death. Results: We propose a serial framework integrating analysis and calibration modules and we compare various methods for global sensitivity analysis and global parameter estimation. First, adequacy of the network structure is checked by global sensitivity analysis to changes in concentrations of molecular species, validating that the model can reproduce qualitative features of the system behavior derived from experiments or literature surveys. Second, rate parameters are ranked by importance using gradient-based and variance-based sensitivity indices, and we systematically determine the optimal number of parameters to include in model calibration. Third, deterministic, stochastic and hybrid algorithms for global optimization are applied to estimate the values of the most important parameters by fitting to time series data. We compare the performance of these three optimization algorithms. Conclusions: Our proposed framework covers the entire process from validating a proto-model to establishing a realistic model for in silico experiments and thereby provides a generalized workflow for the construction of predictive models of complex network systems.en_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1471-2105-11-202en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleSystematic calibration of a cell signaling network modelen_US
dc.typeArticleen_US
dc.identifier.citationBMC Bioinformatics. 2010 Apr 23;11(1):202en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorSpencer, Sabrina L.
dc.contributor.mitauthorAlbeck, John G.
dc.contributor.mitauthorBurke, John M.
dc.contributor.mitauthorSorger, Peter K.
dc.contributor.mitauthorGaudet, Suzanne
dc.relation.journalBMC Bioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid20416044
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2010-09-03T16:00:54Z
dc.language.rfc3066en
dc.rights.holderKim et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsKim, Kyoung Ae; Spencer, Sabrina L; Albeck, John G; Burke, John M; Sorger, Peter K; Gaudet, Suzanne; Kim, Do Hyunen
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record