Show simple item record

dc.contributor.authorKuepfer, Lars
dc.contributor.authorSauer, Uwe
dc.contributor.authorParrilo, Pablo A.
dc.date.accessioned2010-09-23T14:45:01Z
dc.date.available2010-09-23T14:45:01Z
dc.date.issued2007-01
dc.date.submitted2006-09
dc.identifier.issn1471-2105
dc.identifier.urihttp://hdl.handle.net/1721.1/58683
dc.description.abstractBackground: Current approaches to parameter estimation are often inappropriate or inconvenient for the modelling of complex biological systems. For systems described by nonlinear equations, the conventional approach is to first numerically integrate the model, and then, in a second a posteriori step, check for consistency with experimental constraints. Hence, only single parameter sets can be considered at a time. Consequently, it is impossible to conclude that the "best" solution was identified or that no good solution exists, because parameter spaces typically cannot be explored in a reasonable amount of time. Results: We introduce a novel approach based on semidefinite programming to directly identify consistent steady state concentrations for systems consisting of mass action kinetics, i.e., polynomial equations and inequality constraints. The duality properties of semidefinite programming allow to rigorously certify infeasibility for whole regions of parameter space, thus enabling the simultaneous multi-dimensional analysis of entire parameter sets. Conclusion: Our algorithm reduces the computational effort of parameter estimation by several orders of magnitude, as illustrated through conceptual sample problems. Of particular relevance for systems biology, the approach can discriminate between structurally different candidate models by proving inconsistency with the available data.en_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1471-2105-8-12en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleEfficient classification of complete parameter regions based on semidefinite programmingen_US
dc.typeArticleen_US
dc.identifier.citationBMC Bioinformatics. 2007 Jan 15;8(1):12en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorParrilo, Pablo A.
dc.relation.journalBMC Bioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid17224043
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2010-09-02T17:51:48Z
dc.language.rfc3066en
dc.rights.holderKuepfer et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsKuepfer, Lars; Sauer, Uwe; Parrilo, Pablo Aen
dc.identifier.orcidhttps://orcid.org/0000-0003-1132-8477
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record