Show simple item record

dc.contributor.authorLi, Cheng
dc.contributor.authorBeroukhim, Rameen
dc.contributor.authorWeir, Barbara A.
dc.contributor.authorWinckler, Wendy
dc.contributor.authorGarraway, Levi A.
dc.contributor.authorSellers, William R.
dc.contributor.authorMeyerson, Matthew L.
dc.date.accessioned2010-09-23T14:54:25Z
dc.date.available2010-09-23T14:54:25Z
dc.date.issued2008-04
dc.date.submitted2007-11
dc.identifier.issn1471-2105
dc.identifier.urihttp://hdl.handle.net/1721.1/58684
dc.description.abstractBackground: Single nucleotide polymorphisms (SNPs) are the most common genetic variations in the human genome and are useful as genomic markers. Oligonucleotide SNP microarrays have been developed for high-throughput genotyping of up to 900,000 human SNPs and have been used widely in linkage and cancer genomics studies. We have previously used Hidden Markov Models (HMM) to analyze SNP array data for inferring copy numbers and loss-of-heterozygosity (LOH) from paired normal and tumor samples and unpaired tumor samples. Results: We proposed and implemented major copy proportion (MCP) analysis of oligonucleotide SNP array data. A HMM was constructed to infer unobserved MCP states from observed allele-specific signals through emission and transition distributions. We used 10 K, 100 K and 250 K SNP array datasets to compare MCP analysis with LOH and copy number analysis, and showed that MCP performs better than LOH analysis for allelic-imbalanced chromosome regions and normal contaminated samples. The major and minor copy alleles can also be inferred from allelic-imbalanced regions by MCP analysis. Conclusion: MCP extends tumor LOH analysis to allelic imbalance analysis and supplies complementary information to total copy numbers. MCP analysis of mixing normal and tumor samples suggests the utility of MCP analysis of normal-contaminated tumor samples. The described analysis and visualization methods are readily available in the user-friendly dChip software.en_US
dc.description.sponsorshipNational Institutes of Health (U.S) (grant 5R01 HG002341)en_US
dc.description.sponsorshipNational Institutes of Health (U.S) ( 1P50 CA090578 )en_US
dc.description.sponsorshipDana Farber Cancer Institute. Claudia Adams Barr Programen_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1471-2105-9-204en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleMajor copy proportion analysis of tumor samples using SNP arraysen_US
dc.typeArticleen_US
dc.identifier.citationBMC Bioinformatics. 2008 Apr 21;9(1):204en_US
dc.contributor.departmentBroad Institute of MIT and Harvarden_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorMeyerson, Matthew L.
dc.contributor.mitauthorBeroukhim, Rameen
dc.contributor.mitauthorWeir, Barbara A.
dc.contributor.mitauthorWinckler, Wendy
dc.contributor.mitauthorGarraway, Levi A.
dc.relation.journalBMC Bioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.pmid18426588
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2010-08-16T17:39:50Z
dc.language.rfc3066en
dc.rights.holderLi et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsLi, Cheng; Beroukhim, Rameen; Weir, Barbara A; Winckler, Wendy; Garraway, Levi A; Sellers, William R; Meyerson, Matthewen
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record