Show simple item record

dc.contributor.authorSilbey, Robert J.
dc.contributor.authorBarkai, E.
dc.date.accessioned2010-09-23T20:15:41Z
dc.date.available2010-09-23T20:15:41Z
dc.date.issued2010-04
dc.date.submitted2009-12
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.urihttp://hdl.handle.net/1721.1/58689
dc.description.abstractWe study the diffusion of tagged hard-core interacting Brownian point particles under the influence of an external force field in one dimension. Using the Jepsen line we map this many-particle problem onto a single particle one. We obtain general equations for the distribution and the mean-square displacement {(xT)[superscript 2]} of the tagged center particle valid for rather general external force fields and initial conditions. The case of symmetric distribution of initial conditions around the initial position of the tagged particle on x=0 and symmetric potential fields V(x)=V(−x) yields zero drift {xT}=0 and is investigated in detail. We find {(xT)superscript 2]}=R(1−R)/2Nr[superscript 2] where 2N is the (large) number of particles in the system. R is a single particle reflection coefficient,i.e., the probability that a particle free of collisions starts on x[subscript 0]>0 and remains in x>0 while r is theprobability density of noninteracting particles on the origin. We show that this equation is related to themathematical theory of order statistics and it can be used to find {(xT)[superscript 2]} even when the motion betweencollision events is not Brownian (e.g., it might be ballistic or anomalous diffusion). As an example we derive the Percus relation for non-Gaussian diffusion. A wide range of physical behaviors emerge which are very different than the classical single file subdiffusion {(xT)[superscript 2]}~t[superscript 1/2] found for uniformly distributed particles in an infinite space and in the absence of force fields.en_US
dc.description.sponsorshipIsraeli Science Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevE.81.041129en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titleDiffusion of tagged particle in an exclusion processen_US
dc.typeArticleen_US
dc.identifier.citationBarkai, E., and R. Silbey. “Diffusion of tagged particle in an exclusion process.” Physical Review E 81.4 (2010): 041129. © 2010 The American Physical Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.approverSilbey, Robert J.
dc.contributor.mitauthorSilbey, Robert J.
dc.contributor.mitauthorBarkai, E.
dc.relation.journalPhysical Review Een_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBarkai, E.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record