Show simple item record

dc.contributor.authorAaronson, Scott
dc.contributor.authorDrucker, Andrew Donald
dc.date.accessioned2010-09-28T14:48:49Z
dc.date.available2010-09-28T14:48:49Z
dc.date.issued2010-06
dc.date.submitted2010-06
dc.identifier.isbn978-1-4503-0050-6
dc.identifier.urihttp://hdl.handle.net/1721.1/58730
dc.description.abstractWe prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Mathematical Sciences (Grant No. 0844626)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Young Faculty Awarden_US
dc.description.sponsorshipW.M. Keck Foundationen_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://doi.acm.org/10.1145/1806689.1806710en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.subjectquantum computationen_US
dc.subjectnonuniform computationen_US
dc.subjectlocal hamiltoniansen_US
dc.subjectlearningen_US
dc.subjectkarp-lipton theoremen_US
dc.subjectcompressionen_US
dc.subjectboostingen_US
dc.subjectadviceen_US
dc.titleA Full Characterization of Quantum Adviceen_US
dc.typeArticleen_US
dc.identifier.citationAaronson, Scott, and Andrew Drucker. “A full characterization of quantum advice.” Proceedings of the 42nd ACM symposium on Theory of computing. Cambridge, Massachusetts, USA: ACM, 2010. 131-140.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverAaronson, Scott
dc.contributor.mitauthorAaronson, Scott
dc.contributor.mitauthorDrucker, Andrew Donald
dc.relation.journalProceedings of the 42nd ACM Symposium on Theory of Computingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsAaronson, Scott; Drucker, Andrewen
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record