MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential

Author(s)
Golland, Polina; Yeo, Boon Thye Thomas; Vercauteren, Tom; Fillard, Pierre; Peyrat, Jean-Marc; Pennec, Xavier; Ayache, Nicholas; Clatz, Olivier; ... Show more Show less
Thumbnail
DownloadYeo-2009-DT-REFinD_ Diffusion.pdf (1.162Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we propose the DT-REFinD algorithm for the diffeomorphic nonlinear registration of diffusion tensor images. Unlike scalar images, deforming tensor images requires choosing both a reorientation strategy and an interpolation scheme. Current diffusion tensor registration algorithms that use full tensor information face difficulties in computing the differential of the tensor reorientation strategy and consequently, these methods often approximate the gradient of the objective function. In the case of the finite-strain (FS) reorientation strategy, we borrow results from the pose estimation literature in computer vision to derive an analytical gradient of the registration objective function. By utilizing the closed-form gradient and the velocity field representation of one parameter subgroups of diffeomorphisms, the resulting registration algorithm is diffeomorphic and fast. We contrast the algorithm with a traditional FS alternative that ignores the reorientation in the gradient computation. We show that the exact gradient leads to significantly better registration at the cost of computation time. Independently of the choice of Euclidean or Log-Euclidean interpolation and sum of squared differences dissimilarity measure, the exact gradient achieves better alignment over an entire spectrum of deformation penalties. Alignment quality is assessed with a battery of metrics including tensor overlap, fractional anisotropy, inverse consistency and closeness to synthetic warps. The improvements persist even when a different reorientation scheme, preservation of principal directions, is used to apply the final deformations.
Date issued
2009-11
URI
http://hdl.handle.net/1721.1/58791
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Medical Imaging
Publisher
Institute of Electrical and Electronics Engineers
Citation
Yeo, B.T.T. et al. “DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential.” Medical Imaging, IEEE Transactions on 28.12 (2009): 1914-1928. © 2010 Institute of Electrical and Electronics Engineers.
Version: Final published version
Other identifiers
INSPEC Accession Number: 10995375
ISSN
0278-0062
Keywords
DT-REFinD algorithm, Euclidean interpolation, Log-Euclidean interpolation, closed-form gradient, computer vision, diffeomorphic nonlinear registration, diffusion tensor image registration, finite-strain differential algorithm, fractional anisotropy, inverse consistency, one-parameter subgroups, pose estimation literature, registration objective function, synthetic warps, tensor overlap, tensor reorientation strategy, velocity field representation, Diffeomorphisms, diffusion tensor imaging, finite-strain (FS), finite-strain differential, preservation of principal directions, registration, tensor reorientation

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.