dc.contributor.author | Xu, Zhiping | |
dc.contributor.author | Buehler, Markus J | |
dc.date.accessioned | 2010-10-04T19:48:57Z | |
dc.date.available | 2010-10-04T19:48:57Z | |
dc.date.issued | 2010-06 | |
dc.date.submitted | 2010-02 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.issn | 1550-2376 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/58855 | |
dc.description.abstract | Mechanical properties of structural protein materials are crucial for our understanding of biological processes and disease states. Through utilization of molecular simulation based on stress wave tracking, we investigate mechanical energy transfer processes in fibrous beta-sheet-rich proteins that consist of highly ordered hydrogen bond (H-bond) networks. By investigating four model proteins including two morphologies of amyloids, beta solenoids, and silk beta-sheet nanocrystals, we find that all beta-sheet-rich protein fibrils provide outstanding elastic moduli, where the silk nanocrystal reaches the highest value of ≈40 GPa. However, their capacities to dissipate mechanical energy differ significantly and are controlled strongly by the underlying molecular structure of H-bond network. Notably, silk beta-sheet nanocrystals feature a ten times higher energy damping coefficient than others, owing to flexible intrastrand motions in the transverse directions. The results demonstrate a unique feature of silk nanocrystals, their capacity to simultaneously provide extreme stiffness and energy dissipation capacity. Our results could help one to explain the remarkable properties of silks from an atomistic and molecular perspective, in particular its great toughness and energy dissipation capacity, and may enable the design of multifunctional nanomaterials with outstanding stiffness, strength, and impact resistance. | en_US |
dc.description.sponsorship | United States. Defense Advanced Research Projects Agency (DARPA) | en_US |
dc.description.sponsorship | MIT Energy Initiative (MITEI) | en_US |
dc.description.sponsorship | United States. Office of Naval Research | en_US |
dc.language.iso | en_US | |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevE.81.061910 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | APS | en_US |
dc.title | Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Xu, Zhiping, and Markus J. Buehler. "Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins" Physical Review E 81.6 (2010): 061910. © 2010 The American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Center for Computational Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics | en_US |
dc.contributor.approver | Buehler, Markus J. | |
dc.contributor.mitauthor | Xu, Zhiping | |
dc.contributor.mitauthor | Buehler, Markus J. | |
dc.relation.journal | Physical Review E | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Xu, Zhiping; Buehler, Markus J. | en |
dc.identifier.orcid | https://orcid.org/0000-0002-4173-9659 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |