Show simple item record

dc.contributor.authorFraser, Cameron S.
dc.contributor.authorBertuccelli, Luca F.
dc.contributor.authorChoi, Han-Lim
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2010-10-06T12:41:01Z
dc.date.available2010-10-06T12:41:01Z
dc.date.issued2010-07
dc.date.submitted2010-06
dc.identifier.isbn978-1-4244-7426-4
dc.identifier.issn0743-1619
dc.identifier.otherINSPEC Accession Number: 11509396
dc.identifier.urihttp://hdl.handle.net/1721.1/58887
dc.description.abstractThis paper addresses the problem of information consensus in a team of networked agents with uncertain local estimates described by parameterized distributions in the exponential family. In particular, the method utilizes the concepts of pseudo-measurements and conjugacy of probability distributions to achieve a steady-state estimate consistent with a Bayesian fusion of each agent's local knowledge, without requiring complex channel filters or being limited to normally distributed uncertainties. It is shown that this algorithm, termed hyperparameter consensus, is adaptable to any local uncertainty distribution in the exponential family, and will converge to a Bayesian fusion of local estimates over arbitrary communication networks so long as they are known and strongly connected.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (grant FA9550-08-1-0086)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5530789&isnumber=5530425en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleA Hyperparameter-Based Approach for Consensus Under Uncertaintiesen_US
dc.typeArticleen_US
dc.identifier.citationFraser, C.S.R. et al. “A hyperparameter-based approach for consensus under uncertainties.” American Control Conference (ACC), 2010. 2010. 3192-3197. ©2010 IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Humans and Automation Laben_US
dc.contributor.approverHow, Jonathan P.
dc.contributor.mitauthorFraser, Cameron S.
dc.contributor.mitauthorBertuccelli, Luca F.
dc.contributor.mitauthorHow, Jonathan P.
dc.relation.journalProceedings of the American Control Conference, 2010en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFraser, Cameron S. R.; Bertuccelli, Luca F.; Choi, Han-Lim; How, Jonathan P.
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record