MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time

Author(s)
Bernstein, Aaron
Thumbnail
DownloadBernstein-2009-Fully dynamic (2 + ) approximate all-pairs shortest paths with fast query and close to linear update time.pdf (333.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
For any fixed 1 > [epsilon] > 0 we present a fully dynamic algorithm for maintaining (2 + [epsilon])-approximate all-pairs shortest paths in undirected graphs with positive edge weights. We use a randomized (Las Vegas) update algorithm (but a deterministic query procedure), so the time given is the expected amortized update time. Our query time O(log log log n). The update time is O[over ~](mnO(1/[sqrt](log n)) log (nR)), where R is the ratio between the heaviest and the lightest edge weight in the graph (so R = 1 in unweighted graphs). Unfortunately, the update time does have the drawback of a super-polynomial dependence on e. it grows as (3/[epsilon])[sqrt]log n/log(3/[epsilon]) = n [sqrt]log (3/[epsilon])/log n. Our algorithm has a significantly faster update time than any other algorithm with sub-polynomial query time. For exact distances, the state of the art algorithm has an update time of O[over ~](n[superscript 2]). For approximate distances, the best previous algorithm has a O(kmn[superscript 1/k]) update time and returns (2 k - 1) stretch paths. Thus, it needs an update time of O(m[sqrt](n)) to get close to our approximation, and it has to return O([sqrt](log n)) approximate distances to match our update time.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/58901
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
50th Annual IEEE Symposium on Foundations of Computer Science, 2009. FOCS '09
Citation
Bernstein, Aaron. “Fully Dynamic (2 + Epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time.” IEEE, 2009. 693–702.
Version: Final published version
Other identifiers
INSPEC Accession Number: 11207109
ISBN
978-1-4244-5116-6
ISSN
0272-5428
Keywords
shortest paths, graph algorithms, dynamic algorithms, approximation algorithms

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.