dc.contributor.author | Hsu, Bo-June | |
dc.contributor.author | Glass, James R. | |
dc.date.accessioned | 2010-10-07T16:43:50Z | |
dc.date.available | 2010-10-07T16:43:50Z | |
dc.date.issued | 2009-05 | |
dc.identifier.isbn | 978-1-4244-2353-8 | |
dc.identifier.issn | 1520-6149 | |
dc.identifier.other | INSPEC Accession Number: 10701485 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/58944 | |
dc.description.abstract | In limited data domains, many effective language modeling techniques construct models with parameters to be estimated on an in-domain development set. However, in some domains, no such data exist beyond the unlabeled test corpus. In this work, we explore the iterative use of the recognition hypotheses for unsupervised parameter estimation. We also evaluate the effectiveness of supervised adaptation using varying amounts of user-provided transcripts of utterances selected via multiple strategies. While unsupervised adaptation obtains 80% of the potential error reductions, it is outperformed by using only 300 words of user transcription. By transcribing the lowest confidence utterances first, we further obtain an effective word error rate reduction of 0.6%. | en_US |
dc.description.sponsorship | T-Party Project | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ICASSP.2009.4960706 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | IEEE | en_US |
dc.subject | adaptation | en_US |
dc.subject | language modeling | en_US |
dc.subject | speech recognition | en_US |
dc.title | Language model parameter estimation using user transcriptions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bo-June Hsu, and J. Glass. “Language model parameter estimation using user transcriptions.” Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. 2009. 4805-4808. © 2009 IEEE | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.approver | Glass, James R. | |
dc.contributor.mitauthor | Hsu, Bo-June | |
dc.contributor.mitauthor | Glass, James R. | |
dc.relation.journal | Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2009 | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Hsu, Bo-June; Glass, James | en |
dc.identifier.orcid | https://orcid.org/0000-0002-3097-360X | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |