MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Topology of the Metabolic Network to Predict Viability of Mutant Strains

Author(s)
Mirny, Leonid A.; Wunderlich, Zeba
Thumbnail
Downloadgb-2005-6-13-p15.pdf (874.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution
Metadata
Show full item record
Abstract
Background: Understanding the relationships between the structure (topology) and function of biological networks is a central question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and highly-disputed hypothesis. While the structural analysis of interaction networks demonstrates a correlation between the topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic networks, e.g. flux balance analysis (FBA), are more successful in predicting phenotypes of knock-out strains. Results: We reconcile these seemingly conflicting results by showing that the topology of E. coli's metabolic network is, in fact, sufficient to predict the viability of knock-out strains with accuracy comparable to FBA on a large, unbiased dataset of mutants. This surprising result is obtained by introducing a novel topology-based measure of network transport: synthetic accessibility. We also show that other popular topology-based characteristics like node degree, graph diameter, and node usage (betweenness) fail to predict the viability of mutant strains. The success of synthetic accessibility demonstrates its ability to capture the essential properties of the metabolic network, such as the branching of chemical reactions and the directed transport of material from inputs to outputs. Conclusions: Our results (1) strongly support a link between the topology and function of biological networks; (2) in agreement with recent genetic studies, emphasize the minimal role of flux re-routing in providing robustness of mutant strains.
Date issued
2005-12
URI
http://hdl.handle.net/1721.1/59195
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Genome Biology
Publisher
BioMed Central Ltd
Citation
Genome Biology. 2005 Dec 28;6(13):P15
Version: Original manuscript
ISSN
1465-6906

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.