MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rank priors for continuous non-linear dimensionality reduction

Author(s)
Darrell, Trevor J.; Urtasun, Raquel; Geiger, Andreas
Thumbnail
DownloadGeiger-2009-Rank priors for continuous non-linear dimensionality reduction.pdf (2.293Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Discovering the underlying low-dimensional latent structure in high-dimensional perceptual observations (e.g., images, video) can, in many cases, greatly improve performance in recognition and tracking. However, non-linear dimensionality reduction methods are often susceptible to local minima and perform poorly when initialized far from the global optimum, even when the intrinsic dimensionality is known a priori. In this work we introduce a prior over the dimensionality of the latent space that penalizes high dimensional spaces, and simultaneously optimize both the latent space and its intrinsic dimensionality in a continuous fashion. Ad-hoc initialization schemes are unnecessary with our approach; we initialize the latent space to the observation space and automatically infer the latent dimensionality. We report results applying our prior to various probabilistic non-linear dimensionality reduction tasks, and show that our method can outperform graph-based dimensionality reduction techniques as well as previously suggested initialization strategies. We demonstrate the effectiveness of our approach when tracking and classifying human motion.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/59287
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009
Publisher
Institute of Electrical and Electronics Engineers
Citation
Geiger, A., R. Urtasun, and T. Darrell. “Rank priors for continuous non-linear dimensionality reduction.” Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. 880-887. © 2009 Institute of Electrical and Electronics Engineers.
Version: Final published version
Other identifiers
INSPEC Accession Number: 10835871
ISBN
978-1-4244-3992-8
ISSN
1063-6919

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.