Show simple item record

dc.contributor.authorBehrens, Mark Joseph
dc.contributor.authorDavis, Daniel G.
dc.date.accessioned2010-10-13T19:17:04Z
dc.date.available2010-10-13T19:17:04Z
dc.date.issued2009-09
dc.identifier.issn0002-9947
dc.identifier.urihttp://hdl.handle.net/1721.1/59290
dc.description.abstractLet E be a k-local profinite G-Galois extension of an E1-ring spectrum A (in the sense of Rognes). We show that E may be regarded as producing a discrete G-spectrum. Also, we prove that if E is a profaithful k-local profinite extension which satisfies certain extra conditions, then the forward direction of Rognes's Galois correspondence extends to the profinite setting. We show that the function spectrum FA((E[superscript hH])k; (E[superscript hK])k) is equivalent to the localized homotopy fixed point spectrum ((E[[G=H]])[superscript hK])k where H and K are closed subgroups of G. Applications to Morava E-theory are given, including showing that the homotopy fixed points defined by Devinatz and Hopkins for closed subgroups of the extended Morava stabilizer group agree with those defined with respect to a continuous action in terms of the derived functor of fixed points.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0605100)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (VIGRE grant)en_US
dc.description.sponsorshipLouisiana Board of Regentsen_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleThe homotopy fixed point spectra of profinite Galois extensionsen_US
dc.typeArticleen_US
dc.identifier.citationBehrens, Mark and Daniel G. Davis. "The homotopy fixed point spectra of profinite Galois extensions." Volume 362, Number 9, September 2010, p.4983–5042.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBehrens, Mark Joseph
dc.contributor.mitauthorBehrens, Mark Joseph
dc.relation.journalTransactions of the American Mathematical Societyen_US
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBehrens, Mark; Davis, Daniel G.
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record