Show simple item record

dc.contributor.authorBranavan, Satchuthanan R.
dc.contributor.authorChen, Harr
dc.contributor.authorZettlemoyer, Luke S.
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2010-10-14T12:46:32Z
dc.date.available2010-10-14T12:46:32Z
dc.date.issued2009-08
dc.date.submitted2009-08
dc.identifier.isbn978-1-932432-45-9
dc.identifier.urihttp://hdl.handle.net/1721.1/59313
dc.description.abstractIn this paper, we present a reinforcement learning approach for mapping natural language instructions to sequences of executable actions. We assume access to a reward function that defines the quality of the executed actions. During training, the learner repeatedly constructs action sequences for a set of documents, executes those actions, and observes the resulting reward. We use a policy gradient algorithm to estimate the parameters of a log-linear model for action selection. We apply our method to interpret instructions in two domains --- Windows troubleshooting guides and game tutorials. Our results demonstrate that this method can rival supervised learning techniques while requiring few or no annotated training examples.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-0448168)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-0835445)en_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-0835652)en_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://portal.acm.org/citation.cfm?id=1687892en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.subjectalgorithmsen_US
dc.subjectdesignen_US
dc.subjectexperimentationen_US
dc.subjectlanguagesen_US
dc.subjectmeasurementen_US
dc.subjectperformanceen_US
dc.titleReinforcement Learning for Mapping Instructions to Actionsen_US
dc.typeArticleen_US
dc.identifier.citationBranavan, S.R.K., Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay (2009). "Reinforcement learning for mapping instructions to actions." Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP (Morristown, N.J.: Association for Computational Linguistics): 82-90. © Association for Computing Machinery.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverBarzilay, Regina
dc.contributor.mitauthorBranavan, Satchuthanan R.
dc.contributor.mitauthorChen, Harr
dc.contributor.mitauthorZettlemoyer, Luke S.
dc.contributor.mitauthorBarzilay, Regina
dc.relation.journalProceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLPen_US
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBranavan, S. R. K.; Chen, Harr; Zettlemoyer, Luke S.; Barzilay, Regina
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record