Show simple item record

dc.contributor.authorGloor, Peter A.
dc.contributor.authorKrauss, Jonas
dc.contributor.authorNann, Stefan
dc.contributor.authorFischbach, Kai
dc.contributor.authorSchoder, Detlef
dc.date.accessioned2010-10-14T21:10:00Z
dc.date.available2010-10-14T21:10:00Z
dc.date.issued2009-10
dc.date.submitted2009-08
dc.identifier.isbn978-1-4244-5334-4
dc.identifier.isbn978-0-7695-3823-5
dc.identifier.otherINSPEC Accession Number: 10908417
dc.identifier.urihttp://hdl.handle.net/1721.1/59353
dc.description.abstractWe introduce a novel set of social network analysis based algorithms for mining the Web, blogs, and online forums to identify trends and find the people launching these new trends. These algorithms have been implemented in Condor, a software system for predictive search and analysis of the Web and especially social networks. Algorithms include the temporal computation of network centrality measures, the visualization of social networks as Cybermaps, a semantic process of mining and analyzing large amounts of text based on social network analysis, and sentiment analysis and information filtering methods. The temporal calculation of betweenness of concepts permits to extract and predict long-term trends on the popularity of relevant concepts such as brands, movies, and politicians. We illustrate our approach by qualitatively comparing Web buzz and our Web betweenness for the 2008 US presidential elections, as well as correlating the Web buzz index with share prices.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CSE.2009.186en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.subjectWeb miningen_US
dc.subjectSocial network analysisen_US
dc.subjectsemantic social network analysisen_US
dc.subjecttrend predictionen_US
dc.titleWeb Science 2.0: Identifying Trends through Semantic Social Network Analysisen_US
dc.typeArticleen_US
dc.identifier.citationGloor, P.A. et al. “Web Science 2.0: Identifying Trends through Semantic Social Network Analysis.” Computational Science and Engineering, 2009. CSE '09. International Conference on. 2009. 215-222. ©2009 Institute of Electrical and Electronics Engineers.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Collective Intelligenceen_US
dc.contributor.approverGloor, Peter A.
dc.contributor.mitauthorGloor, Peter A.
dc.relation.journalInternational Conference on Computational Science and Engineering, 2009. CSE '09en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGloor, Peter A.; Krauss, Jonas; Nann, Stefan; Fischbach, Kai; Schoder, Detlefen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record