dc.contributor.author | Grosse, Roger Baker | |
dc.contributor.author | Johnson, Micah K. | |
dc.contributor.author | Adelson, Edward H. | |
dc.contributor.author | Freeman, William T. | |
dc.date.accessioned | 2010-10-15T14:44:07Z | |
dc.date.available | 2010-10-15T14:44:07Z | |
dc.date.issued | 2010-05 | |
dc.date.submitted | 2009-10 | |
dc.identifier.isbn | 978-1-4244-4420-5 | |
dc.identifier.issn | 1550-5499 | |
dc.identifier.other | INSPEC Accession Number: 11367860 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/59363 | |
dc.description.abstract | The intrinsic image decomposition aims to retrieve “intrinsic” properties of an image, such as shading and reflectance. To make it possible to quantitatively compare different approaches to this problem in realistic settings, we present a ground-truth dataset of intrinsic image decompositions for a variety of real-world objects. For each object, we separate an image of it into three components: Lambertian shading, reflectance, and specularities. We use our dataset to quantitatively compare several existing algorithms; we hope that this dataset will serve as a means for evaluating future work on intrinsic images. | en_US |
dc.description.sponsorship | United States. National Geospatial-Intelligence Agency | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant 0739255) | en_US |
dc.description.sponsorship | United States. National Geospatial-Intelligence Agency (NEGI- 1582-04-0004) | en_US |
dc.description.sponsorship | Multidisciplinary University Research Initiative (MURI) (Grant N00014-06-1-0734) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ICCV.2009.5459428 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | IEEE | en_US |
dc.title | Ground truth dataset and baseline evaluations for intrinsic image algorithms | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Grosse, R. et al. “Ground truth dataset and baseline evaluations for intrinsic image algorithms.” Computer Vision, 2009 IEEE 12th International Conference on. 2009. 2335-2342. © Copyright 2009 IEEE | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Freeman, William T. | |
dc.contributor.mitauthor | Grosse, Roger Baker | |
dc.contributor.mitauthor | Johnson, Micah K. | |
dc.contributor.mitauthor | Adelson, Edward H. | |
dc.contributor.mitauthor | Freeman, William T. | |
dc.relation.journal | Proceedings of the 2009 IEEE 12th International Conference on Computer Vision | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Grosse, Roger; Johnson, Micah K; Adelson, Edward H; Freeman, William T | en |
dc.identifier.orcid | https://orcid.org/0000-0002-2231-7995 | |
dc.identifier.orcid | https://orcid.org/0000-0003-2222-6775 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |