Show simple item record

dc.contributor.authorGrosse, Roger Baker
dc.contributor.authorJohnson, Micah K.
dc.contributor.authorAdelson, Edward H.
dc.contributor.authorFreeman, William T.
dc.date.accessioned2010-10-15T14:44:07Z
dc.date.available2010-10-15T14:44:07Z
dc.date.issued2010-05
dc.date.submitted2009-10
dc.identifier.isbn978-1-4244-4420-5
dc.identifier.issn1550-5499
dc.identifier.otherINSPEC Accession Number: 11367860
dc.identifier.urihttp://hdl.handle.net/1721.1/59363
dc.description.abstractThe intrinsic image decomposition aims to retrieve “intrinsic” properties of an image, such as shading and reflectance. To make it possible to quantitatively compare different approaches to this problem in realistic settings, we present a ground-truth dataset of intrinsic image decompositions for a variety of real-world objects. For each object, we separate an image of it into three components: Lambertian shading, reflectance, and specularities. We use our dataset to quantitatively compare several existing algorithms; we hope that this dataset will serve as a means for evaluating future work on intrinsic images.en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agencyen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0739255)en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NEGI- 1582-04-0004)en_US
dc.description.sponsorshipMultidisciplinary University Research Initiative (MURI) (Grant N00014-06-1-0734)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2009.5459428en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleGround truth dataset and baseline evaluations for intrinsic image algorithmsen_US
dc.typeArticleen_US
dc.identifier.citationGrosse, R. et al. “Ground truth dataset and baseline evaluations for intrinsic image algorithms.” Computer Vision, 2009 IEEE 12th International Conference on. 2009. 2335-2342. © Copyright 2009 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverFreeman, William T.
dc.contributor.mitauthorGrosse, Roger Baker
dc.contributor.mitauthorJohnson, Micah K.
dc.contributor.mitauthorAdelson, Edward H.
dc.contributor.mitauthorFreeman, William T.
dc.relation.journalProceedings of the 2009 IEEE 12th International Conference on Computer Visionen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGrosse, Roger; Johnson, Micah K; Adelson, Edward H; Freeman, William Ten
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dc.identifier.orcidhttps://orcid.org/0000-0003-2222-6775
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record